Bilevel programming has recently received attention in the literature, due to a wide range of applications, including reinforcement learning and hyper-parameter optimization. However, it is widely assumed that the underlying bilevel optimization problem is solved either by a single machine or in the case of multiple machines connected in a star-shaped network, i.e., federated learning setting. The latter approach suffers from a high communication cost on the central node (e.g., parameter server) and exhibits privacy vulnerabilities. Hence, it is of interest to develop methods that solve bilevel optimization problems in a communication-efficient decentralized manner. To that end, this paper introduces a penalty function based decentralized algorithm with theoretical guarantees for this class of optimization problems. Specifically, a distributed alternating gradient-type algorithm for solving consensus bilevel programming over a decentralized network is developed. A key feature of the proposed algorithm is to estimate the hyper-gradient of the penalty function via decentralized computation of matrix-vector products and few vector communications, which is then integrated within our alternating algorithm to give the finite-time convergence analysis under different convexity assumptions. Owing to the generality of this complexity analysis, our result yields convergence rates for a wide variety of consensus problems including minimax and compositional optimization. Empirical results on both synthetic and real datasets demonstrate that the proposed method works well in practice.
translated by 谷歌翻译
自适应梯度算法(例如Adagrad及其变体)在培训深神经网络方面已广受欢迎。尽管许多适合自适应方法的工作都集中在静态的遗憾上,作为实现良好遗憾保证的性能指标,但对这些方法的动态遗憾分析尚不清楚。与静态的遗憾相反,动态遗憾被认为是绩效测量的更强大的概念,因为它明确阐明了环境的非平稳性。在本文中,我们通过动态遗憾的概念在一个强大的凸面设置中浏览了Adagrad(称为M-Adagrad)的一种变体,该遗憾衡量了在线学习者的性能,而不是参考(最佳)解决方案,这可能会改变时间。我们证明了根据最小化序列的路径长度的束缚,该序列基本上反映了环境的非平稳性。此外,我们通过利用每个回合中学习者的多个访问权限来增强动态遗憾。经验结果表明,M-Adagrad在实践中也很好。
translated by 谷歌翻译
Reinforcement learning (RL) gained considerable attention by creating decision-making agents that maximize rewards received from fully observable environments. However, many real-world problems are partially or noisily observable by nature, where agents do not receive the true and complete state of the environment. Such problems are formulated as partially observable Markov decision processes (POMDPs). Some studies applied RL to POMDPs by recalling previous decisions and observations or inferring the true state of the environment from received observations. Nevertheless, aggregating observations and decisions over time is impractical for environments with high-dimensional continuous state and action spaces. Moreover, so-called inference-based RL approaches require large number of samples to perform well since agents eschew uncertainty in the inferred state for the decision-making. Active inference is a framework that is naturally formulated in POMDPs and directs agents to select decisions by minimising expected free energy (EFE). This supplies reward-maximising (exploitative) behaviour in RL, with an information-seeking (exploratory) behaviour. Despite this exploratory behaviour of active inference, its usage is limited to discrete state and action spaces due to the computational difficulty of the EFE. We propose a unified principle for joint information-seeking and reward maximization that clarifies a theoretical connection between active inference and RL, unifies active inference and RL, and overcomes their aforementioned limitations. Our findings are supported by strong theoretical analysis. The proposed framework's superior exploration property is also validated by experimental results on partial observable tasks with high-dimensional continuous state and action spaces. Moreover, the results show that our model solves reward-free problems, making task reward design optional.
translated by 谷歌翻译
本文提出了一种在机器人操纵运动中处理物体滑移的新型控制方法。滑移是许多机器人抓握和操纵任务中失败的主要原因。现有工程增加了抓地力以避免/控制滑移。但是,当(i)机器人无法增加抓地力时,这可能是不可行的 - 最大抓地力已被施加或(ii)增加的力损坏了抓地物物体,例如软果。此外,机器人在物体表面形成稳定的掌握时固定了握力,并且在实时操作过程中更改握紧力可能不是有效的控制政策。我们提出了一种新颖的控制方法,以避免滑移,包括学到的动作条件的滑移预测指标和受约束的优化器,避免了预测的机器人动作。我们通过一系列真实机器人测试案例显示了拟议的轨迹适应方法的有效性。我们的实验结果表明,我们提出的数据驱动的预测控制器可以控制训练中看不见的物体的滑动。
translated by 谷歌翻译
动机:在超声引导活检过程中检测前列腺癌是具有挑战性的。癌症的高度异质外观,超声伪像的存在和噪声都导致了这些困难。高频超声成像的最新进展 - 微拆卸 - 在高分辨率下大大提高了组织成像的能力。我们的目的是研究专门针对微型启动引导的前列腺癌活检的强大深度学习模型的发展。对于临床采用的模型,一个关键的挑战是设计一种可以确定癌症的解决方案,同时从粗略的组织病理学测量中学习引入弱标签的活检样品。方法:我们使用了从194例接受了前列腺活检的患者中获得的微型图像的数据集。我们使用共同教学范式来训练一个深层模型,以处理标签中的噪声,以及一种证据深度学习方法进行不确定性估计。我们使用准确性与信心的临床相关指标评估了模型的性能。结果:我们的模型实现了对预测不确定性的良好估计,而面积为88 $ \%$。联合结合中的共同教学和证据深度学习的使用比单独单独的不确定性估计明显更好。在不确定性估计中,我们还提供了与最先进的比较。
translated by 谷歌翻译
分布式多智能经纪增强学习(Marl)算法最近引起了兴趣激增,主要是由于深神经网络(DNN)的最新进步。由于利用固定奖励模型来学习基础值函数,传统的基于模型(MB)或无模型(MF)RL算法不可直接适用于MARL问题。虽然涉及单一代理时,基于DNN的解决方案完全良好地表现出,但是这种方法无法完全推广到MARL问题的复杂性。换句话说,尽管最近的基于DNN的DNN用于多种子体环境的方法取得了卓越的性能,但它们仍然容易出现过度,对参数选择的高敏感性,以及样本低效率。本文提出了多代理自适应Kalman时间差(MAK-TD)框架及其继任者表示的基于代表的变体,称为MAK-SR。直观地说,主要目标是利用卡尔曼滤波(KF)的独特特征,如不确定性建模和在线二阶学习。提议的MAK-TD / SR框架考虑了与高维多算法环境相关联的动作空间的连续性,并利用卡尔曼时间差(KTD)来解决参数不确定性。通过利用KTD框架,SR学习过程被建模到过滤问题,其中径向基函数(RBF)估计器用于将连续空间编码为特征向量。另一方面,对于学习本地化奖励功能,我们求助于多种模型自适应估计(MMAE),处理缺乏关于观察噪声协方差和观察映射功能的先前知识。拟议的MAK-TD / SR框架通过多个实验进行评估,该实验通过Openai Gym Marl基准实施。
translated by 谷歌翻译
外骨骼和矫形器是可穿戴移动系统,为用户提供机械益处。尽管在过去几十年中有重大改进,但该技术不会完全成熟,以便采用剧烈和非编程任务。为了适应这种功能不全,需要分析和改进该技术的不同方面。许多研究一直在努力解决外骨骼的某些方面,例如,机构设计,意向预测和控制方案。但是,大多数作品都专注于设计或应用的特定元素,而无需提供全面的审查框架。本研究旨在分析和调查为改进和广泛采用这项技术的贡献方面。为了解决此问题,在引入辅助设备和外骨骼后,将从物理人员 - 机器人接口(HRI)的角度来研究主要的设计标准。通过概述不同类别的已知辅助设备的几个例子,将进一步开发该研究。为了建立智能HRI策略并为用户提供直观的控制,将研究认知HRI。将审查这种策略的各种方法,并提出了意图预测的模型。该模型用于从单个电拍摄(EMG)通道输入的栅极相位。建模结果显示出低功耗辅助设备中单通道输入的潜在使用。此外,所提出的模型可以在具有复杂控制策略的设备中提供冗余。
translated by 谷歌翻译
基于视觉的控制在研究中发现了一个关键位置,以在物理传感限制下控制连续式机器人时解决状态反馈的要求。传统的视觉伺服需要特征提取和跟踪,而成像设备捕获图像,这限制了控制器的效率。我们假设采用深度学习模型和实现直接视觉伺服可以通过消除跟踪要求和控制连续内机器人而无需精确的系统模型来有效地解决问题。在本文中,我们控制了一种利用改进的VGG-16深度学习网络和掌握直接视觉伺服方法的单段肌腱驱动的连续内机器人。所提出的算法首先在搅拌机中使用目标的一个输入图像在搅拌机中开发,然后在真正的机器人上实现。由归一化目标和捕获图像之间的绝对差异和反映的正常,阴影和遮挡场景的收敛性和准确性证明了所提出的控制器的有效性和鲁棒性。
translated by 谷歌翻译